Data Science
LIFE CYCLE
Microsoft on Team DS Lifecycle - "The Team Data Science Process (TDSP) is an agile, iterative data science methodology to deliver predictive analytics solutions and intelligent applications efficiently. TDSP helps improve team collaboration and learning by suggesting how team roles work best together. TDSP includes best practices and structures from Microsoft and other industry leaders to help toward successful implementation of data science initiatives. The goal is to help companies fully realize the benefits of their analytics program.
This article provides an overview of TDSP and its main components. We provide a generic description of the process here that can be implemented with different kinds of tools. A more detailed description of the project tasks and roles involved in the lifecycle of the process is provided in additional linked topics. Guidance on how to implement the TDSP using a specific set of Microsoft tools and infrastructure that we use to implement the TDSP in our teams is also provided."
"When I used to do consulting, I’d always seek to understand an organization’s context for developing data projects, based on these considerations:
Strategy: What is the organization trying to do (objective) and what can it change to do it better (levers)?
Data: Is the organization capturing necessary data and making it available?
Analytics: What kinds of insights would be useful to the organization?
Implementation: What organizational capabilities does it have?
Maintenance: What systems are in place to track changes in the operational environment?
Constraints: What constraints need to be considered in each of the above areas?"
WORKFLOWS
PLATFORMS
STACK
Being a DS / Researcher
Advice for a ds, business kpi are not research kpi, etc
Team Building / Group Cohesion
DS vs DA vs MLE - the most intensive diagram post ever. This is the motherload of figure references.
References:
Why data science needs generalists not specialists
(good advice) Building a DS function (team)
Culture
Netflix culture
Reed hastings on netflix' keeper test - "netflixs-keeper-test-is-the-secret-to-a-successful-workforce"
Agile for data-science-research
SOTA AND CURRENT TRENDS SUMMARIES
Building Data/DS teams
Guilds / Gangs / Squads by Aviran Mordo
Squads, Tribes, Guilds, dont be like Spotify
YOUTUBE COURSES
Matrix Multiplication - linear algebra
Deep learning Course
Kadenze - deep learning tensor flow - Histograms for (Image distribution - mean distribution) / std dev, are looking quite good.
Machine Learning Courses
NLP Courses
Predictive Analytics Course
Week 2: Lesson 29: supervised learning
Lesson 36: From rules to trees
Lesson 43: overfitting, then validation, then accuracy
Lesson 46: bootstrap, bagging, boosting, random forests.
Lesson 59: Logistic regression, SVM, Regularization, Lasso, Ridge regression
Lesson 64: gradient descent, stochastic, parallel, batch.
Unsupervised: Lesson X K-means, DBscan
BOOKS & NOTEBOOKS
Machine learning design patterns, git notebooks!, medium
DP1 - transform Moving an ML model to production is much easier if you keep inputs, features, and transforms separate
DP2 - checkpoints Saving the intermediate weights of your model during training provides resilience, generalization, and tunability
DP3 - virtual epochs Base machine learning model training and evaluation on total number of examples, not on epochs or steps
DP4 - keyed predictions Export your model so that it passes through client keys
DP5 - repeatable sampling use the hash of a well distributed column to split your data into training, validation, and testing
Gensim notebooks - from w2v, doc2vec to nmf, lda, pca, sklearn api, cosine, topic modeling, tsne, etc.
Deep learning with python - francois chollet, deep learning & vision git notebooks!, official notebooks.
Yandex school, nlp notebooks
Machine learning engineering book (i.e., data science)
COST
Patents
General Advice
(really good) Practical advice for analysis of large, complex data sets - distributions, outliers, examples, slices, metric significance, consistency over time, validation, description, evaluation, robustness in measurement, reproducibility, etc.
Last updated